

Abstract—Due to wireless communication technologies,

positioning technologies, and mobile computing develop quickly,

mobile services are becoming practical and important on big

spatiotemporal databases management. Mobile service users

move only inside a spatial network, e.g. a road network. They

often issue the K Nearest Neighbor (KNN) query to obtain data

objects reachable through the road network. The challenge

problem of mobile services is how to efficiently answer the data

objects which user interest to the corresponding mobile users.

Lu et al. have proposed a RNG (Road Network Grid) index for

speeding up the KNN query on real-life road networks. Since

they divide the road, this makes the number of points of the

graph increase. It increases the execution time of constructing

the index structure. Therefore, in this paper, we propose a

network model that captures the real-life road networks. We

map the real-life road networks into graph directly. Then,

based on our network model, we propose an EBNA

(Edge-Based Nine-Area tree) index structure to make the

search time of obtaining the interest edge information quickly.

From our simulation result, we show that the performance of

constructing the EBNA index is better than constructing the

RNG index and the performance of the KNN query processing

by using EBNA index is better than the KNN query processing

by using RNG index.

Index Terms—Edge-based, index structure, KNN, road

network.

I. INTRODUCTION

A spatial database system is a database system that

contains a set of objects in space. It offers spatial data types in

its data model and query language. Most existing researches

in spatial database only consider the Euclidean space. The

distance between two objects is determined by their relative

position in space. However, in practice, the users can only

move inside pre-defined road networks (road, railway, river,

etc.). The distance between two objects in spatial network

databases is the shortest path length of two objects rather than

their Euclidean distance. Consequently, previous researches

are not suitable in spatial network databases (SNDB) [1][2].

Many algorithms for answering variety spatial queries are

developed. Spatial queries, or query arise over spatial data,

can be classified into three main types: spatial range queries,

spatial join queries, and nearest neighbor queries. The most

Manuscript received April 28, 2015; revised July 18, 2015.

Y. I. Chang and M. H. Tsai are with the Department of Computer Science

and Engineering, National Sun Yat-sen University, Kaohsiung, 80424

Taiwan (e-mail: changyi@cse.nsysu.edu.tw,

d023040002@student.nsysu.edu.tw).

X. L. Wu is with the Department of Computer Science and Engineering,

National Sun Yat-sen University, Kaohsiung, 80424 Taiwan. He is now with

the Department of IT, Bread of Life Christian Church in Kaohsiung, 81365

Taiwan (e-mail: joseph_wu@bolkh.org.tw).

one of nearest neighbor queries is K Nearest Neighbor query

[3]. An example of K nearest neighbor query is "Find 5

restaurants that are the nearest to NSYSU." We usually

answer the top k nearest neighbors to the user. The spatial

network databases in real-life application become more and

more important. Therefore, some studies force on spatial

network database [4], [5]. The field of spatial network

databases has to force on two main topics: 1) modeling the

real-life road network and 2) indexing and query processing.

The challenge of the spatial network database is how to

transfer the real-life maps (networks) into a modeling graph.

In this paper, we propose an Edge-Based Nine-Area tree

(EBNA) index structure to solve the search time in the leaf

node and speed up the KNN query. In the EBNA index

structure, we do not have to partition the space to construct

the index structure and we effectively obtain the edge

information.

The rest of the paper is organized as follows. Section II

gives a survey of some spatial queries in spatial network

databases. Section III presents our proposed modeling, the

partition number scheme use of in the EBNA index structure,

and the KNN query processing. In Section IV, we give the

performance of the proposed method. Finally, we give the

conclusion in Section V.

II. RELATED WORK

In the last decade, query processing in spatial databases

develops quickly, consequently, a great number of query

methods have been proposed. In this section, we give a

survey of KNN query processing algorithms in spatial

network databases. Papadias et al. proposed the Incremental

Network Expansion (IER) method to compute KNN [6].

They proposed two approaches to answer the KNN queries

on Euclidean distance and network distance. Yin et al.

propose a KNN algorithm which uses a set of index structures

to support the queries of moving object. Their method is that

change the dynamic problem to the static problem.

Lu et al. proposes a road network model which captures

the real-life road networks [7]. Based on the RNG index, the

KNN and CKNN queries are proposed. The Road Network

Grid (RNG) to partition the road network into cells, and

generate a quad-tree to index all cells. 0-(a) shows an

example of the grid partition, and 0-(b) shows the quad-tree

which index all cells in 0-(a). In the quad-tree, each inner

node records the corresponding cell positions and the pointer

of four subcells. The leaf nodes record the corresponding cell

positions and the information of all adjacent edges. 0 shows

the leaf node format of RNG index. The vl records the

positions of all vertices inside the cell, and the adjacent

An Edge-Based Algorithm for Spatial Query Processing in

Real-Life Road Networks

Ye-In Chang, Meng-Hsuan Tsai, and Xu-Lun Wu

International Journal of Modeling and Optimization, Vol. 5, No. 4, August 2015

308DOI: 10.7763/IJMO.2015.V5.480

vertex list avl records positions of all adjacent vertices. Each

entry of avl represents an edge in the road network model.

This entry has the length (len), the speed limitation (Vsp), and

block factor (bf) of the edge. Each avl entry has a pointer that

points to the object list dp, while the object list records

positions of all the objects located at the corresponding edge.

The flag f is used to distinguish between directed edges and

undirected edges. They use the RNG index to process KNN

queries. The KNN query algorithm requires the number of

nearest neighbor k, the query object q, and the two end points

(vs and ve) of the edge where the query is issued as inputs. The

avl entry in the RNG index and the data objects along the

edge can be obtained by using the star point vs and the end

point ve. If the corresponding edge is a directed edge, the

objects in the road from the query point to the end points can

be obtained and the end point ve is recorded for further

exploring. Otherwise, it collects all the objects along the edge

and records the two end points for further exploring. If the

number of data objects is less than k, it has to explore other

edges and the data objects will be obtained. The processing

continues until the number of data objects not less than k, and

the top k data objects is the KNNs (see Fig. 1-Fig. 2).

 (a)

(b)

 Fig. 1. The example of: (a) grid partition of road network; (b) a quad-tree

index of grid partition.

Fig. 2. Information of adjacent edges.

III. EDGE-BASED QUERY PROCESSING IN REAL-LIFE ROAD

NETWORKS

Due to the developments of mobile services, the query

processing in the road (spatial) networks have become an

important research field. The research works focus on three

topics which are modeling the real-life network, efficiently

indexing the road network, and query processing based on

the index structure. Therefore, in this section, we describes

the proposed road network model, indexing the road

networks, and query processing based on our index structure.

A. The EBNA Index Structure

We propose the EBNA index that is an edge-based index

structure. And we locate the spatial object on the spatial

number, instead of the partitioning the spatial space. The road

network consists of a number of edges. We store the details

of edges on the NA-tree. We use the spatial number of two

end points of the edge to decide which child belongs to. 0-(a)

shows an example of the road network, and 0-(b) the

corresponding NA-tree [8] (see Fig. 3).

(a)

(b)

 Fig. 3. An example: (a) the road network model; (b) the corresponding

NA-tree.

In the NA-tree, each internal node stores the range of the

spatial number and the pointer that points to children. Each

leaf node stores the positions of two end points of an edge

and the information that relates to the edge. Based on our

road network model, we show how to store the data objects

depending on the road type. 0-(a) shows an example that the

road network with data objects and the corresponding road

network model and tree structure are shown in 0-(b) and 0-(c).

The V1V2 road is Type 2 road with U-turn, the leaf node stores

the information of V1 to V2 edge and the information of V2 to

V1. In this child, the U_turn_pos and U_turn_Obj store the

position of U-turn that is a gray point in the 0-(b) and data

objects locate at the U-turn position. The ExpEdge item has

pointers to point to other leaf nodes, if the end point of the

edge is the start point of other edges. Let's see an example of

V1 to V2 edge in 0-(b). Since vertex V2 is the end point of the

V1 to V2 edge and is the start point of V2 to V1 edge, V2 to V4

edge, and V2 to V3 edge, the ExpEdge item of V1 to V2 edge

International Journal of Modeling and Optimization, Vol. 5, No. 4, August 2015

309

entry has three pointers to point to the V2 to V1 edge entry, the

V2 to V4 edge entry, and the V2 to V3 edge entry. V4V5 and V6V4

is Type 1 road, it is mapped to only one directed edge.

Therefore, the leaf node only has one entry. Since V2V4 is

Type 3 road, it is mapped into two directed edges. The

ObjList item of this two directed edge has same data objects.

V2V3 is type 2 road that is mapped to two directed edge and

the ObjList item stores the data objects along the side of the

edge (see Fig. 4-Fig. 5).

(a) (b)

(c)

Fig. 4. The road network: (a) for example; (b) in the model; (c) by EBNA index structure.

Fig. 5. EB_KNN_algorithm.

B. K Nearest Neighbor Query Processing

We propose the EB_KNN_algorithm (Edge-Based K

Nearest Neighbor query algorithm) to process KNN queries

in which data objects of interest are static and locate at the

sides of the road. 0 shows our method for processing KNN

queries using the EBNA index.

0-(a) shows an example that the query object locates on the

Type 1 road. We consider the query issues a 4NN query. The

data object O11 is obtained from function Obtain_Dirobj and

is stored in array KNN. The links of the expansion edge

information of (V4, V5) and (V4, V2) are inserted into

Edge_ExpQ with the distance from the query object to the

start point of the expansion edge for edge expansion.

Therefore, Edge_ExpQ contains {(V4, V2), (V4, V5)} and the

KNN contains {O11}. Because the number of KNN is less than

4, we have to execute the edge expansion. We execute

function Edge_Expansion to do edge expansion. We dequeue

Edge_ExpQ to obtain the expansion edge information (V4,

V2). Data object O10, O2, and O1 are inserted into cur_KNN.

The expansion edges of (V2, V1,) and (V2, V3,) are inserted

into Edge_ExpQ}. Since V2V4 is the Type 3 road, we also

have to consider edge expansion of the start point of edge (V4,

V2). Because (V4, V2) has already visited and (V4, V5) has

already existed in Edge_ExpQ, we do not insert this two edge

into Edge_ExpQ. Now, Final_KNN is equal to cur_KNN.

Since the number of data objects in KNN is equal to 4, the

dMAX is set to the distance from the query object to the data

object O1 (= 11). However, dMAX is larger than the distance

International Journal of Modeling and Optimization, Vol. 5, No. 4, August 2015

310

from the query object to the start point of the edge (V4, V5),

we continue to execute edge expansion. The data object O13

is inserted into Final_KNN. The array Final_KNN contains

objects O11, O10, O2, O1, O13. Because the distance from the

query object to the start point of the expansion edge is larger

than dMAX, the edge expansion terminates, and we select the

first 4 data objects O11, O10, O2, O1 as the query result. The

KNN query processing terminates. 0-(b) shows an example

that the query object locates on the Type 3 road. We also

consider the query issues a 4NN query. The data objects are

obtained from ObjList. Since the query can reach anywhere

of the road, we have to execute the edge expansion of the start

point of the edge and the end point of the edge. Therefore,

Edge_ExpQ contains {(V2, V1), (V2, V3), (V4, V2), (V4, V5)}

after we visit the edge (V2, V4). We execute edge expansion

according the order of Edge_ExpQ, then we obtain data

object O1, O2, O10, and O3 as the 4NN result (see Fig. 6).

(a)

(b)

Fig. 6. One query on: (a) Type 1 road; (b) Type 3 road.

IV. PERFORMANCE

In this section, we study the performance of the KNN

query processing using the RNG index structure and the

EBNA index structure. We compare the two methods using

the CPU time. The simulation is performed with the

following variable parameters. Parameter QTV is the

threshold value of the number of the quad-tree's leaf node.

Parameter NTV is the maximal number of the NA-tree's leaf

node on the EBNA index structure. Parameter DOB is the

density of data objects in the space. Parameter QNN is the

number of nearest neighbors for each query. Parameter RD1

is the ratio of the road of One-Way Traffic Road. Parameter

RD2 is the ratio of the road of Two-Way Traffic Road.

Parameter RD3 is the ratio of the road of Two-Way Traffic

Road with U-turn. Parameter RD4 is the ratio of the road of

Arbitrary Traffic Road. We will set different ratio of the

different road types to compare the performance of the query

processing on the RNG index structure and on the EBNA

index structureeither.

We compare the performance of the construction of the

RNG index structure and the EBNA index structure. 0-(a)

shows the simulation result of the comparison of the

construction of the RNG index and the EBNA index on the

real-life dataset of Oldenburg and San Joaquin County. The

performance of the EBNA index structure is better than that

of the RNG index structure. When the number of vertices and

edges increases, the execution time also increases. A

comparison of the execution time of constructing the index

structures of real-life datasets of North America and San

Francisco is shown in 0-(b). We also find out that the

performance of the EBNA index structure of these two

real-life datasets is better than that of the RNG index

structure. However, in these two real-life datasets, when the

execution time of constructing the RNG index structure

decreases, the execution time of the EBNA index structure

increases. In 0-(a), the difference of the execution time of

KNN queries of these two methods increases when the object

density decreases. When the object density decreases, the

number of edges which must be visited to obtain the

interested data objects increases. In the RNG index structure,

times of visiting the tree increases, if the number of edges

have to be visited. In the EBNA index structure, the leaf

node's links consist a graph. It only has to visit the NA-tree

from the root to the leaf node one time. Then, according to

the leaf node's links, it can obtain all the data objects that the

query interests. Therefore, the search time decreases. Next,

we experiments the performance of the different number of

NNs in 0-(b). In order to obtain a large number of interested

objects, the number of edges has to be visited increases. The

condition makes times of visiting the quad-tree from the root

to the leaf node increase in the RNG index structure;

therefore, the execution time of KNN queries increases.

However, in the EBNA index structure, it visits the NA-tree

form the root to the leaf node only one time since it can obtain

all the interested objects from the graph that leaf node's forms.

The execution time of KNN queries of our method is shorter

that Lu et al.'s method (see Fig. 7-Fig. 8).

(a) (b)

Fig. 7. A comparison of the execution time of real-life datasets of: (a)

Oldenburg and San Joaquin County; (b) North America and San Francisco.

(a) (b)

Fig. 8. A comparison of the execution time of KNN queries of real-life

datasets of: (a) San Joaquin County of different object densities of DOB; (b)

San Joaquin County of different number of NNs.

International Journal of Modeling and Optimization, Vol. 5, No. 4, August 2015

311

V. CONCLUSIONS

We have proposed a road network model that captures the

real-life road networks. Based on our proposed model, we

have proposed an EBNA index that is an edge-based index

structure. The EBNA index structure has made the KNN

queries in real-life road network databases efficient. When a

KNN query is executed, it only has to visit the root one time.

We have concluded that the execution time of different

real-life datasets of the EBNA index is faster than that of the

RNG index. Second, we have shown the comparison of the

execution time of KNN queries of the RNG index structure.

ACKNOWLEDGMENT

This research was supported in part by the Ministry of

Science and Technology of Republic of China under Grant

No. MOST 103-2221-E-110-056.

REFERENCES

[1] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor

queries over moving objects,” in Proc. the 21st International

Conference on Data Engineering, pp. 631-642, 2005.

[2] Y. G. Zou and Q. L. Fan, “OQ-Quad: An efficient query processing for

continuous k-nearest neighbor based on quad tree,” in Proc. the 4th

International Conference on Computer Science and Education, pp.

197-202, 2009.

[3] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k

nearest neighbor joins using MapReduce,” in Proc. the VLDB

Endowment, pp. 1016-1027, 2012.

[4] K. Xuan, G. Zhao, D. Taniar, and B. Srinivasan, “Continuous range

search query processing in mobile navigation,” in Proc. the 14th IEEE

International Conference on Parallel and Distributed Systems, pp.

361-368, 2008.

[5] K. Zheng, G. Trajcevski, X. Zhou, and P. Scheuermann, “Probabilistic

range queries for uncertain trajectories on road networks,” in Proc. the

14th International Conference on Extending Database Technology, pp.

283-294, 2011.

[6] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in

spatial network databases,” in Proc. the 29th International Conference

on Very Large Data Bases, pp. 802-813, 2003.

[7] Y. Lu, B. Cui, J. Zhao, H. Lu, and J. Shen, “Towards efficient and

flexible KNN query processing in real-life road networks,” in Proc. the

9th International Conference on Web-Age Information Management,

pp. 230-237, 2008.

[8] Y. I. Chang, C. H. Liao, and H. L. Chen, “NA-Trees: A dynamic index

for spatial data,” Information Science and Engineering, vol. 19, no. 1,

pp. 103-139, January 2003.

Ye-In Chang was born in Taipei, Taiwan, R.O.C. in

1964. She received her B.S. degree in computer

science and information engineering from National

Taiwan University, Taipei, Taiwan, in 1986. She

received her M.S. and Ph.D. degrees in computer and

information science from Ohio State University,

Columbus, Ohio, in 1987 and 1991, respectively.

From August 1991 to July 1999, she joined the Faculty

of the Department of Applied Mathematics at National

Sun Yat-Sen University, Kaohsiung, Taiwan. From August 1997, she has

been a professor in the Department of Applied Mathematics at National Sun

Yat-Sen University, Kaohsiung, Taiwan. Since August 1999, she has been a

professor in the Department of Computer Science and Engineering at

National Sun Yat-Sen University, Kaohsiung, Taiwan. Her research interests

include database systems, distributed systems, multimedia information

systems, mobile information systems and data mining.

Meng-Hsuan Tsai received her B.S. degree in

information management from Chang Jung Christian

University in 2007 and his M.S. degree in Computer

Science from National Pingtung University of

Education in 2009. She is currently a Ph.D. student in

Department of Computer Science and Engineering at

National Sun Yat-Sen University. Her research

interests include database systems and data mining.

Wu-Lun Wu received his B.S. degree in computer

science and information engineering from Tamkang

University in 2009, and his M.S. degree in computer

science and engineering from National Sun Yat-Sen

University in 2011. He is currently a system design

engineer in Taiwan.

International Journal of Modeling and Optimization, Vol. 5, No. 4, August 2015

312

