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Abstract—Due to wireless communication technologies, 

positioning technologies, and mobile computing develop quickly, 

mobile services are becoming practical and important on big 

spatiotemporal databases management. Mobile service users 

move only inside a spatial network, e.g. a road network. They 

often issue the K Nearest Neighbor (KNN) query to obtain data 

objects reachable through the road network. The challenge 

problem of mobile services is how to efficiently answer the data 

objects which user interest to the corresponding mobile users. 

Lu et al. have proposed a RNG (Road Network Grid) index for 

speeding up the KNN query on real-life road networks. Since 

they divide the road, this makes the number of points of the 

graph increase. It increases the execution time of constructing 

the index structure. Therefore, in this paper, we propose a 

network model that captures the real-life road networks. We 

map the real-life road networks into graph directly. Then, 

based on our network model, we propose an EBNA 

(Edge-Based Nine-Area tree) index structure to make the 

search time of obtaining the interest edge information quickly. 

From our simulation result, we show that the performance of 

constructing the EBNA index is better than constructing the 

RNG index and the performance of the KNN query processing 

by using EBNA index is better than the KNN query processing 

by using RNG index. 

 
Index Terms—Edge-based, index structure, KNN, road 

network.  

 

I. INTRODUCTION 

A spatial database system is a database system that 

contains a set of objects in space. It offers spatial data types in 

its data model and query language. Most existing researches 

in spatial database only consider the Euclidean space. The 

distance between two objects is determined by their relative 

position in space. However, in practice, the users can only 

move inside pre-defined road networks (road, railway, river, 

etc.). The distance between two objects in spatial network 

databases is the shortest path length of two objects rather than 

their Euclidean distance. Consequently, previous researches 

are not suitable in spatial network databases (SNDB) [1][2]. 

Many algorithms for answering variety spatial queries are 

developed. Spatial queries, or query arise over spatial data, 

can be classified into three main types: spatial range queries, 

spatial join queries, and nearest neighbor queries. The most 
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one of nearest neighbor queries is K Nearest Neighbor query 

[3]. An example of K nearest neighbor query is "Find 5 

restaurants that are the nearest to NSYSU." We usually 

answer the top k nearest neighbors to the user. The spatial 

network databases in real-life application become more and 

more important. Therefore, some studies force on spatial 

network database [4], [5]. The field of spatial network 

databases has to force on two main topics: 1) modeling the 

real-life road network and 2) indexing and query processing. 

The challenge of the spatial network database is how to 

transfer the real-life maps (networks) into a modeling graph. 

In this paper, we propose an Edge-Based Nine-Area tree 

(EBNA) index structure to solve the search time in the leaf 

node and speed up the KNN query. In the EBNA index 

structure, we do not have to partition the space to construct 

the index structure and we effectively obtain the edge 

information. 

The rest of the paper is organized as follows. Section II 

gives a survey of some spatial queries in spatial network 

databases. Section III presents our proposed modeling, the 

partition number scheme use of in the EBNA index structure, 

and the KNN query processing. In Section IV, we give the 

performance of the proposed method. Finally, we give the 

conclusion in Section V.  

 

II. RELATED WORK 

In the last decade, query processing in spatial databases 

develops quickly, consequently, a great number of query 

methods have been proposed. In this section, we give a 

survey of KNN query processing algorithms in spatial 

network databases. Papadias et al. proposed the Incremental 

Network Expansion (IER) method to compute KNN [6]. 

They proposed two approaches to answer the KNN queries 

on Euclidean distance and network distance. Yin et al. 

propose a KNN algorithm which uses a set of index structures 

to support the queries of moving object. Their method is that 

change the dynamic problem to the static problem. 

Lu et al. proposes a road network model which captures 

the real-life road networks [7]. Based on the RNG index, the 

KNN and CKNN queries are proposed. The Road Network 

Grid (RNG) to partition the road network into cells, and 

generate a quad-tree to index all cells. 0-(a) shows an 

example of the grid partition, and 0-(b) shows the quad-tree 

which index all cells in 0-(a). In the quad-tree, each inner 

node records the corresponding cell positions and the pointer 

of four subcells. The leaf nodes record the corresponding cell 

positions and the information of all adjacent edges. 0 shows 

the leaf node format of RNG index. The vl records the 

positions of all vertices inside the cell, and the adjacent 
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vertex list avl records positions of all adjacent vertices. Each 

entry of avl represents an edge in the road network model. 

This entry has the length (len), the speed limitation (Vsp), and 

block factor (bf) of the edge. Each avl entry has a pointer that 

points to the object list dp, while the object list records 

positions of all the objects located at the corresponding edge. 

The flag f is used to distinguish between directed edges and 

undirected edges. They use the RNG index to process KNN 

queries. The KNN query algorithm requires the number of 

nearest neighbor k, the query object q, and the two end points 

(vs and ve) of the edge where the query is issued as inputs. The 

avl entry in the RNG index and the data objects along the 

edge can be obtained by using the star point vs and the end 

point ve. If the corresponding edge is a directed edge, the 

objects in the road from the query point to the end points can 

be obtained and the end point ve is recorded for further 

exploring. Otherwise, it collects all the objects along the edge 

and records the two end points for further exploring. If the 

number of data objects is less than k, it has to explore other 

edges and the data objects will be obtained. The processing 

continues until the number of data objects not less than k, and 

the top k data objects is the KNNs (see Fig. 1-Fig. 2). 

 

    
   (a)    

 

     
(b) 

 Fig. 1. The example of: (a) grid partition of road network; (b) a quad-tree 

index of grid partition. 

 

 
Fig. 2. Information of adjacent edges. 

 

III. EDGE-BASED QUERY PROCESSING IN REAL-LIFE ROAD 

NETWORKS 

Due to the developments of mobile services, the query 

processing in the road (spatial) networks have become an 

important research field. The research works focus on three 

topics which are modeling the real-life network, efficiently 

indexing the road network, and query processing based on 

the index structure. Therefore, in this section, we describes 

the proposed road network model, indexing the road 

networks, and query processing based on our index structure. 

A. The EBNA Index Structure 

We propose the EBNA index that is an edge-based index 

structure. And we locate the spatial object on the spatial 

number, instead of the partitioning the spatial space. The road 

network consists of a number of edges. We store the details 

of edges on the NA-tree. We use the spatial number of two 

end points of the edge to decide which child belongs to. 0-(a) 

shows an example of the road network, and 0-(b) the 

corresponding NA-tree [8] (see Fig. 3).  

 
(a) 

 

 
(b) 

 Fig. 3. An example: (a) the road network model; (b) the corresponding 

NA-tree. 

 

In the NA-tree, each internal node stores the range of the 

spatial number and the pointer that points to children. Each 

leaf node stores the positions of two end points of an edge 

and the information that relates to the edge. Based on our 

road network model, we show how to store the data objects 

depending on the road type. 0-(a) shows an example that the 

road network with data objects and the corresponding road 

network model and tree structure are shown in 0-(b) and 0-(c). 

The V1V2 road is Type 2 road with U-turn, the leaf node stores 

the information of V1 to V2 edge and the information of V2 to 

V1. In this child, the U_turn_pos and U_turn_Obj store the 

position of U-turn that is a gray point in the 0-(b) and data 

objects locate at the U-turn position. The ExpEdge item has 

pointers to point to other leaf nodes, if the end point of the 

edge is the start point of other edges. Let's see an example of 

V1 to V2 edge in 0-(b). Since vertex V2 is the end point of the 

V1 to V2 edge and is the start point of V2 to V1 edge, V2 to V4 

edge, and V2 to V3 edge, the ExpEdge item of V1 to V2 edge 
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entry has three pointers to point to the V2 to V1 edge entry, the 

V2 to V4 edge entry, and the V2 to V3 edge entry. V4V5 and V6V4 

is Type 1 road, it is mapped to only one directed edge. 

Therefore, the leaf node only has one entry. Since V2V4 is 

Type 3 road, it is mapped into two directed edges. The 

ObjList item of this two directed edge has same data objects. 

V2V3 is type 2 road that is mapped to two directed edge and 

the ObjList item stores the data objects along the side of the 

edge (see Fig. 4-Fig. 5). 

                                     
(a)                                                                                      (b) 

 
(c) 

Fig. 4.  The road network: (a) for example; (b) in the model; (c) by EBNA index structure.

 
Fig. 5. EB_KNN_algorithm. 

B. K Nearest Neighbor Query Processing 

We propose the EB_KNN_algorithm (Edge-Based K 

Nearest Neighbor query algorithm) to process KNN queries 

in which data objects of interest are static and locate at the 

sides of the road. 0 shows our method for processing KNN 

queries using the EBNA index. 

0-(a) shows an example that the query object locates on the 

Type 1 road. We consider the query issues a 4NN query. The 

data object O11 is obtained from function Obtain_Dirobj and 

is stored in array KNN. The links of the expansion edge 

information of (V4, V5) and (V4, V2) are inserted into 

Edge_ExpQ with the distance from the query object to the 

start point of the expansion edge for edge expansion. 

Therefore, Edge_ExpQ contains {(V4, V2), (V4, V5)} and the 

KNN contains {O11}. Because the number of KNN is less than 

4, we have to execute the edge expansion. We execute 

function Edge_Expansion to do edge expansion. We dequeue 

Edge_ExpQ to obtain the expansion edge information (V4, 

V2). Data object O10, O2, and O1 are inserted into cur_KNN. 

The expansion edges of (V2, V1,) and (V2, V3,) are inserted 

into Edge_ExpQ}. Since V2V4 is the Type 3 road, we also 

have to consider edge expansion of the start point of edge (V4, 

V2). Because (V4, V2) has already visited and (V4, V5) has 

already existed in Edge_ExpQ, we do not insert this two edge 

into Edge_ExpQ. Now, Final_KNN is equal to cur_KNN. 

Since the number of data objects in KNN is equal to 4, the 

dMAX is set to the distance from the query object to the data 

object O1 (= 11). However, dMAX is larger than the distance 
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from the query object to the start point of the edge (V4, V5), 

we continue to execute edge expansion. The data object O13 

is inserted into Final_KNN. The array Final_KNN contains 

objects O11, O10, O2, O1, O13. Because the distance from the 

query object to the start point of the expansion edge is larger 

than dMAX, the edge expansion terminates, and we select the 

first 4 data objects O11, O10, O2, O1 as the query result. The 

KNN query processing terminates. 0-(b) shows an example 

that the query object locates on the Type 3 road. We also 

consider the query issues a 4NN query. The data objects are 

obtained from ObjList. Since the query can reach anywhere 

of the road, we have to execute the edge expansion of the start 

point of the edge and the end point of the edge. Therefore, 

Edge_ExpQ contains {(V2, V1), (V2, V3), (V4, V2), (V4, V5)} 

after we visit the edge (V2, V4). We execute edge expansion 

according the order of Edge_ExpQ, then we obtain data 

object O1, O2, O10, and O3 as the 4NN result (see Fig. 6). 

 

 
(a) 

 
(b) 

Fig. 6.  One query on: (a) Type 1 road; (b) Type 3 road. 

 

IV. PERFORMANCE 

In this section, we study the performance of the KNN 

query processing using the RNG index structure and the 

EBNA index structure. We compare the two methods using 

the CPU time. The simulation is performed with the 

following variable parameters. Parameter QTV is the 

threshold value of the number of the quad-tree's leaf node. 

Parameter NTV is the maximal number of the NA-tree's leaf 

node on the EBNA index structure. Parameter DOB is the 

density of data objects in the space. Parameter QNN is the 

number of nearest neighbors for each query. Parameter RD1 

is the ratio of the road of One-Way Traffic Road. Parameter 

RD2 is the ratio of the road of Two-Way Traffic Road. 

Parameter RD3 is the ratio of the road of Two-Way Traffic 

Road with U-turn. Parameter RD4 is the ratio of the road of 

Arbitrary Traffic Road. We will set different ratio of the 

different road types to compare the performance of the query 

processing on the RNG index structure and on the EBNA 

index structureeither. 

We compare the performance of the construction of the 

RNG index structure and the EBNA index structure. 0-(a) 

shows the simulation result of the comparison of the 

construction of the RNG index and the EBNA index on the 

real-life dataset of Oldenburg and San Joaquin County. The 

performance of the EBNA index structure is better than that 

of the RNG index structure. When the number of vertices and 

edges increases, the execution time also increases. A 

comparison of the execution time of constructing the index 

structures of real-life datasets of North America and San 

Francisco is shown in 0-(b). We also find out that the 

performance of the EBNA index structure of these two 

real-life datasets is better than that of the RNG index 

structure. However, in these two real-life datasets, when the 

execution time of constructing the RNG index structure 

decreases, the execution time of the EBNA index structure 

increases. In 0-(a), the difference of the execution time of 

KNN queries of these two methods increases when the object 

density decreases. When the object density decreases, the 

number of edges which must be visited to obtain the 

interested data objects increases. In the RNG index structure, 

times of visiting the tree increases, if the number of edges 

have to be visited. In the EBNA index structure, the leaf 

node's links consist a graph. It only has to visit the NA-tree 

from the root to the leaf node one time. Then, according to 

the leaf node's links, it can obtain all the data objects that the 

query interests. Therefore, the search time decreases. Next, 

we experiments the performance of the different number of 

NNs in 0-(b). In order to obtain a large number of interested 

objects, the number of edges has to be visited increases. The 

condition makes times of visiting the quad-tree from the root 

to the leaf node increase in the RNG index structure; 

therefore, the execution time of KNN queries increases. 

However, in the EBNA index structure, it visits the NA-tree 

form the root to the leaf node only one time since it can obtain 

all the interested objects from the graph that leaf node's forms. 

The execution time of KNN queries of our method is shorter 

that Lu et al.'s method (see Fig. 7-Fig. 8).  

 

 
(a)                                           (b) 

Fig. 7. A comparison of the execution time of real-life datasets of: (a) 

Oldenburg and San Joaquin County; (b) North America and San Francisco. 

 

    
(a)                                           (b) 

Fig. 8. A comparison of the execution time of KNN queries of real-life 

datasets of: (a) San Joaquin County of different object densities of DOB; (b) 

San Joaquin County of different number of NNs. 
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V. CONCLUSIONS 

We have proposed a road network model that captures the 

real-life road networks. Based on our proposed model, we 

have proposed an EBNA index that is an edge-based index 

structure. The EBNA index structure has made the KNN 

queries in real-life road network databases efficient. When a 

KNN query is executed, it only has to visit the root one time. 

We have concluded that the execution time of different 

real-life datasets of the EBNA index is faster than that of the 

RNG index. Second, we have shown the comparison of the 

execution time of KNN queries of the RNG index structure. 
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